Supplementary Information

A miniaturized hemoretractometer (mHRM) for blood clot retraction testing

Zida Li¹, Xiang Li¹, Brendan McCracken²,³, Yue Shao¹, Kevin Ward²,³, and Jianping Fu¹,³,⁴,⁵ *

¹Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA; ²Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA; ³Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, USA; ⁴Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA; ⁵Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA

*Correspondence: jpfu@umich.edu
Supplementary Figure 1

Fig. S1. Fabrication of the mHRM device.
Fig. S2. Effect of PDMS on blood coagulation. (a) Comparison of TEG tracings using regular TEG cups and cups pre-coated with PDMS. (b) Bar plots of reaction time T_r, time to maximum amplitude T_{max}, and maximum TEG amplitude as a function of PDMS coating. Data represents the mean ± s.e.m with $n = 5$. P-values were calculated using two-sample unpaired student t-test.
Supplementary Figure 3

Fig. S3. Schematic of TEG tracing, with key parameters highlighted. TEG tracing showed a similar dynamic pattern as that in mHRM, with R corresponding to reaction time T_r, TMA corresponding to time to maximum amplitude T_{max}, α corresponding to CRF growth rate G_{CRF}, and MA corresponding to CRF_{max} in mHRM tracing.