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Modeling development using microfluidics: bridging 
gaps to foster fundamental and translational research
Shiyu Sun1, Xufeng Xue1 and Jianping Fu1,2,3

In vitro stem cell-derived embryo and organ models, termed 
embryoids and organoids, respectively, provide promising 
experimental tools to study physiological and pathological 
processes in mammalian development and organ formation. 
Most of current embryoid and organoid systems are developed 
using conventional three-dimensional cultures that lack 
controls of spatiotemporal extracellular signals. Microfluidics, 
an established technology for quantitative controls and 
quantifications of dynamic chemical and physical 
environments, has recently been utilized for developing next- 
generation embryoids and organoids in a controllable and 
reproducible manner. In this review, we summarize recent 
progress in constructing microfluidics-based embryoids and 
organoids. Development of these models demonstrates the 
successful applications of microfluidics in establishing 
morphogen gradients, accelerating medium transport, exerting 
mechanical forces, facilitating tissue coculture studies, and 
improving assay throughput, thus supporting using 
microfluidics for building next-generation embryoids and 
organoids for fundamental and translational research.
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Introduction
Stem cell-based, in vitro models of mammalian develop-
ments and organ formation are becoming indispensable 
tools for advancing mammalian developmental biology 

and disease modeling [1–6]. This is particularly true for 
understanding human development, given our limited 
access to and bioethical constraints in human embryonic 
tissues. Till now, there are various models of mammalian 
embryo and organ developments, termed embryoids and 
organoids, respectively, that have been reported 
[2,3,5,7–9]. Embryoids have been developed to re-
capitulate early embryogenic events, from pre-implanta-
tion blastocyst formation, to peri-implantation and peri- 
gastrulation development, all the way up to early orga-
nogenesis [1–6]. For organoids, there are numerous or-
ganoids available now to model the development, 
homeostasis, and pathology of organs associated with the 
three definitive germ layers [7–9]. Researchers con-
tinuously develop improved embryoids and organoids 
with enhanced maturity, functions, complexity, structural 
fidelity, and disease or developmental relevance.

Bioengineering technologies have been used success-
fully in the development of embryoids and organoids 
[1,2,4–6,10–21]. These technologies include genetic 
engineering tools [5,6,10–13], functional biomaterials 
[14–16,19,20], and bioengineering tools [1,2,5,6,10,11,21]
that can efficiently modulate spatiotemporal local tissue 
microenvironment. Genetic engineering tools are uti-
lized to generate signaling and lineage reporter lines, 
allowing monitoring of intracellular signaling dynamics 
and cell fate decisions during embryoid and organoid 
developments [4,10,12,13]. Genetic technologies have 
also been utilized to direct cells to interact efficiently 
with specific chemical cues [5,6,10] or local light illu-
minations [11,12]. Functional biomaterials, such as syn-
thetic hydrogels [14,15,19,20] and natural extracellular 
matrix (ECM) proteins [16], have also been used for 
embryoid and organoid developments, either directly in 
conventional three-dimensional (3D) tissue cultures 
[14,15] or in bioprinting [17,18] and microfluidics 
[19,20]. There are other bioengineering tools utilized to 
control the size and shape of initial cell clusters for 
embryoid and organoid developments, such as micro-
patterning [11,21], AggreWell [2,5,6,10], and microwells 
[1]. For prolonged embryoid and organoid cultures, 
tissue culture shakers [6,22] and ex utero culture instru-
ments [5,6] have been utilized.

In this review, we focus on discussing promising appli-
cations of microfluidics in embryoid and organoid de-
velopments. Microfluidic devices can generate gradients 
of chemical signals, useful for tissue patterning and 
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symmetry breaking. Through precise controls of micro-
fluidic environments, physical signals, such as gas com-
position, pressure, and shear stress, can be modulated for 
embryoid and organoid developments. Since micro-
fluidic devices contain prescribed chambers and chan-
nels, useful for loading and positioning different types of 
cells, microfluidic devices are useful for controlling and 
studying cell–cell interactions during embryoid and or-
ganoid developments. There are also important efforts in 
developing automated, high-throughput microfluidic 
devices for embryoid and organoid developments, pro-
mising for translational screening applications. 

Microfluidic gradients inducing tissue 
patterning and symmetry breaking 
During development, tissue patterning is achieved 
through specification and differentiation of embryonic 
progenitor cells into functional tissue cell types in a well- 
orchestrated manner. The importance of chemical sig-
nals, including morphogens, has been well-established 
in tissue patterning. Morphogen gradients in the extra-
cellular space provide positional information, to which 
embryonic progenitor cells respond in a dose-dependent 
manner. Microfluidics offers a convenient platform to 
create and control graded chemical environments to in-
duce tissue patterning in embryoids and organoids. 

Passive diffusion remains the most straightforward way 
for generating microfluidic gradients. Oftentime, cells 
are cultured in a microfluidic chamber connected to 
source and sink reservoirs, which establishes a con-
centration gradient in the cell chamber following the 
classic source–sink model of Fickian diffusion. 
Hydrogels are often added into the cell chamber or be-
tween the cell chamber and source and sink reservoirs to 
prevent advection flows that might cause undesirable 
effects on cells. Using microfluidic chemical gradients 
generated using passive diffusion, a broad concentration 
range of different chemicals have been screened for in-
ducing motor neuron differentiation from mouse em-
bryonic stem cells (Figure 1a) [23]. Microfluidic 
chemical gradients based on passive diffusion have also 
been integrated with a 2D micropatterned human gas-
trulation model to achieve in vivo-like axial germ layer 
patterning, highlighting the importance of combining 
exogenous bioengineering controls and intrinsic stem 
cell self-organization to build embryoids and organoids 
with heightened complexity and in vivo relevance [21]. 

Microfluidic gradients can also be generated through a 
series of splitting and mixing of microfluidic flows 
(Figure 1b). Such microfluidic gradient design has been 
utilized to establish an exogenous Wingless and Int-1 
signal gradient to recapitulate rostral–caudal patterning 
of the neural tube [24]. Interestingly, an isthmic orga-
nizer-like region emerges in the patterned neural tube- 

like structure at the boundary of putative forebrain and 
midbrain regions, highlighting the autonomy and mod-
ularity during organ development. 

Owing to precisely controlled microfluidic environ-
ments, embryoids and organoids developed using mi-
crofluidics often show improved efficiency and 
reproducibility. This feature could be best illustrated 
using the microfluidic post-implantation amniotic sac 
embryoid (PASE). The PASE was first developed using 
a conventional 3D culture, in which a small percentage 
(5–10%) of human pluripotent stem cell (hPSC) clusters 
would undergo lumenogenesis, then symmetry 
breaking, and amniotic patterning, leading to the for-
mation of asymmetric amniotic ectoderm–epiblast pat-
tern that resembles the human amniotic sac [25]. To 
improve PASE formation efficiency, a microfluidic plat-
form was developed to guide formation of hPSC clusters 
in prescribed locations before asymmetric morphogen 
stimulations to drive synchronized PASE formation in a 
controllable and reproducible manner [3,26]. 

Microfluidics for controlling material 
transport and physical environment 
Besides chemical signals, other factors, such as nutrients, 
gases, mechanical forces, and geometric topology, also 
can have an impact on embryoid and organoid devel-
opment. Controlled flows in microfluidic devices can 
enhance nutrient and oxygen transport [27], beneficial to 
tissue growth, survival, and maturation [16,27–29]. For 
example, apoptosis was minimized and proliferation 
was promoted in microfluidic brain organoid cultures 
(Figure 2a) [16]. Improved survival and insulin secretion 
were shown in islet organoids under continuous micro-
fluidic perfusion [27,29]. Microfluidics could also influ-
ence embryoid and organoid development by removing 
secreted factors. For example, in a gut organoid chip 
with independent controls of fluid flow and mechanical 
deformation, basal flow in gut organoids was shown to 
induce villi-like morphogenesis of intestinal epithelium, 
mainly via removal of Wingless and Int-1 antagonists 
secreted by the tissues themselves [8,30]. 

Microfluidics has also been utilized for controlling shear 
stress and hydrodynamic pressure to promote morpho-
genesis and maturation during embryoid and organoid 
developments. It has been shown that kidney organoids 
exposed to high-shear flow exhibited enhanced vascu-
larization and had more mature podocytes and tubular 
compartments compared with those under static culture 
(Figure 2b) [31]. Using microfluidics containing a pres-
sure channel, cyclic pressures were applied on colon 
tumor organoids to mimic peristalsis (Figure 2c) [32]. 
Applying hydrostatic pressures to mimic transmural 
pressures on lung explants, transmural pressure was 
shown to modulate airway-branching morphogenesis, 
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airway smooth muscle contraction, and maturation of 
lung tissues (Figure 2d) [33]. 

Microfluidic devices can also provide precise topologies 
useful for guiding tissue morphogenesis and differ-
entiation. Laser micromachining was applied to fabricate 
a microfluidic channel in hydrogels for the development 
of a gut model suitable for long-term homeostatic culture 
under an external perfusion pump [34]. Topological 
features of the microfluidic mini-gut model guided the 
development of intestinal epithelial tissues, leading to 
the formation of a tube-shaped structure with crypt- and 
villus-like domains (Figure 2e). Importantly, intestinal 
stem cells and Paneth cells were exclusively found in 
crypt-like regions, whereas enterocytes, enteroendocrine 
cells, and goblet cells were exclusively located in villus- 
like regions (Figure 2e), mimicking spatial cell organi-
zations in intestinal epithelial tissues. 

Microfluidics for controlling tissue–tissue 
interactions 
Tissue–tissue interactions are manifested in every step 
of mammalian development and organ formation. 
Microfluidics provides a convenient platform for posi-
tioning different tissue cell types at prescribed locations 
inside a controlled microfluidic environment, imitating 
in vivo-relevant tissue–tissue interactions. To model in-
vasion of extravillous trophoblasts (EVTs) into maternal 
uterus during the placentation, a maternal–fetal interface 
was established by seeding EVTs and endothelium cells 
into two parallel microfluidic channels separated by 
ECM or a pillar barrier array [35,36] (Figure 3a). The 
barrier function of the placenta was also imitated by 
placing trophoblast cells or embryoid bodies in one mi-
crofluidic channel to model the embryonic compartment 
of the fetal–maternal interface and endothelial cells in a 
separate adjacent channel to model the maternal 

Figure 1  
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Morphogen gradient generation by microfluidics. (a) Morphogen gradient generated by diffusion through ECM with cells embedded in ECM [23], with 
(Left) top view and (Right) zoom-in top view. Culture medium is added into 4 reservoirs. Gel and cells are injected into the middle channel. (b) Gradient 
generation by splitting and mixing microfluidic flow [24], with (Left) top view and (Right) zoom-in top view. The flow is driven by syringe pump, and the 
medium flowing through the microfluidic chip is collected in a waste bottle. Flow 1 and flow 2 in microfluidics systems have different chemical 
concentrations, which allows for the creation of a concentration gradient within the device.   
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compartment [37–39]. Similarly, by placing different 
tissue cell types into opposing microfluidic channels 
(Figure 3b), intra-organ models were constructed, such 
as a liver model with hepatocytes interfaced with liver 
sinusoidal endothelial cells, Kupffer cells and hepatic 

stellate cells [40], and a pancreas model with pancreatic 
ductal epithelial cells interfaced with islet cells [41]. 
Vascular and immune systems have also been in-
corporated into microfluidic organoid cultures (Figure 
3c), such as cerebral [42] and hepatic organoids [43,44]. 

Figure 2  
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Microfluidics controls material transport and physical environment. (a) Microfluidic flow accelerates material transport for brain organoids [16]. The 
flow in the microfluidic system is driven by a rocker machine. (b) Kidney organoids cultured under microfluidic shear flows [31], which is driven by 
peristaltic pump. (c) Colon tumor organoids embedded in ECM experiencing cyclic pressures through the application of a microfluidic pressure 
channel [32], with (Upper) overall view and (Lower) zoom-in top view. The pressure in the system is regulated through the pressure channel, where the 
liquid is subjected to increased pressure using an air compressor and controller. The flow within the medium channel is propelled by a syringe pump. 
(d) Lung tissue experiencing transmural pressure difference established using microfluidics [33]. The pressure difference (Δp) within the microfluidic 
system is established by the difference in heights of the culture medium. (e) Microchannel scaffold to guide intestinal epithelial organization and 
differentiation [34]. In the microfluidic system used for intestinal studies, two independent flows are employed. One flow is responsible for delivering a 
medium supplemented with nutrients by passive diffusion, while the other flow driven by syringe pump is used for perfusion within the intestinal lumen.   
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Microphysiological systems containing multiple organ 
models have been established using microfluidics to 
study inter-organ communications and model multi- 
organ processes and systematic diseases [45–49]. Each 
organ model in the microphysiological system can be 
maintained in its own optimal condition, and inter-
connections between organ models are established 
based on their in vivo relationships [47–49] (Figure 3d). 

Microfluidics for scalable translational 
applications 
Microfluidics is intrinsically a scalable technology com-
patible with translational screens. As a potent high- 
throughput technology, droplet microfluidics, for ex-
ample, has been used to generate embryoids and orga-
noids with simplified procedures, great throughput, and 

low variability. So far, droplet microfluidics has been 
used for the developments of epiblast spheroids [50], 
liver organoids [51,52], lung organoids [51,53], kidney 
organoids [51], islet organoids [19,20], mesenchymal 
bodies [54], and tumor organoids [51,53,55] (Figure 4a). 
Some droplet microfluidics-based organoid tools have 
been utilized for large-scale drug screens [51,55]. In 
another example, an automated microfluidic culture was 
developed for pancreatic tumor organoids. This system 
was applied to test up to 20 regimens and 10 patient 
samples in parallel, offering a promising platform for 
individual, combinatorial, and sequential drug screens 
on pancreatic tumor organoids [56] (Figure 4b). 

Live imaging is commonly used for analyzing micro-
fluidic organoid and embryoid cultures, given the 

Figure 3  
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Microfluidics for tissue coculture studies. (a) Cells are seeded into two parallel channels separated by an ECM barrier to study cell migration and 
invasion [35], shown in (Upper) top view and (Lower) side view. (b) Cells are seeded at the opposite sides of a porous membrane to study cell–cell 
interaction by soluble molecules [40,41], shown in (Upper) top overall view and (Lower) zoom-in side view. (c) Endothelial cells invading into a center 
channel containing ECM and organoids for vascularization of organoids [42,43], shown in (Upper) top overall view and (Lower) zoom-in top view. (d) 
Microphysiological systems constructed with multiple organ models on the same chip. Interconnections between organ models are established 
through arteriovenous reservoir [47,49].   
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controlled positioning and orientations of organoids and 
embryoids in microfluidic devices [3,21,34,56,57] 
(Figure 4c). In situ biochemical sensors can also be in-
tegrated with microfluidics, to continually monitor re-
levant culture signals in microfluidic organoid and 
embryoid cultures [58] (Figure 4d). These sensors in-
clude those for monitoring extracellular microenviron-
ment parameters such as pH, oxygen level, and 
temperature. Additionally, electrochemical sensors can 
be utilized to measure soluble protein biomarkers in 
microfluidic organoid and embryoid cultures. Thus, in-
tegration of biosensing technologies with microfluidic 
organoid and embryoid cultures offers enhanced cap-
abilities for continuous medium supply, automated 
sampling and real-time sensing, and precise controls of 
culture conditions, including physiological and me-
chanical forces, for long-term culture of organoids and 
embryoids. 

Conclusions and future directions 
Over the last two decades, a vast array of microfluidic 
technologies has been developed, with some of them 
even targeting single-cell and single-molecule analyses  
[59]. For more detailed discussions on available 

microfluidic technologies for bio-related applications, 
readers are directed to some excellent recent reviews  
[60,61]. Microfluidic tools compatible with mammalian 
cell cultures are particularly attractive for the develop-
ment of next-generation embryoid and organoid cul-
tures. Since such efforts are still at exploratory stages in 
research laboratory settings, polydimethylsiloxane 
(PDMS)-based microfluidic technologies, such as those 
based on soft lithography, remain the most versatile and 
popular ones given the compatibility of PDMS with 
rapid prototype device fabrication, mammalian cell cul-
ture, and live imaging. Nonetheless, changes in device 
material, surface coating, cell number per unit surface 
area, or per unit medium volume may all affect the 
outcome of otherwise-standard embryoid or organoid 
protocols that have been established using conventional 
culture tools. Spatial constraints in microfluidics might 
also present a physical limitation for long-term cultures 
of embryoids and organoids. Thus, it is important to fully 
characterize and optimize microfluidic embryoid and 
organoid development protocols. Future directions in 
this area include applying microfluidic innovations to 
obtain embryoid and organoid systems with enhanced 
maturity, functions, complexity, structural fidelity, and 

Figure 4  
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Microfluidics for scalable productions of embryoids and organoids. (a) Droplet microfluidics for embryoid and organoid generations [19,20]. (b) An 
automated microfluidic system for patient sample screening [56]. The multiplexer is utilized to generate the medium containing various drugs and 
concentrations. (c) Microfluidic chip incorporated with other equipment to be compatible with imaging. (d) The microfluidic chip features an integrated 
sample culture chamber coupled with electrochemical biosensors and physical sensors for real-time monitoring [58]. The flow within the chip is driven 
by a peristaltic pump.   
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disease or development relevance. Microfluidics can 
provide a more in vivo-like environment through dy-
namic spatiotemporal controls of chemical signals, mor-
phogen gradients, material transports, mechanical forces, 
and tissue topology and orientation. The other direction 
is to apply microfluidics to improve the efficiency, re-
producibility, and scalability of embryoid and organoid 
cultures, necessary for translational screens. A widely 
recognized challenge in embryoid and organoid cultures 
is the intra- and inter-batch variability. Microfluidics can 
reduce such variability through implementations of 
precisely controlled spatiotemporal signals to modulate 
embryoid and organoid developments. 
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