MECHANICAL
ENGINEERING
UNDERGRADUATE
Symposium

April 13, 2017

Rubik's Cube Unveiling

Welcome

Noel Perkins Mechanical Engineering

Comments

David Munson Former Dean of the College of Engineering

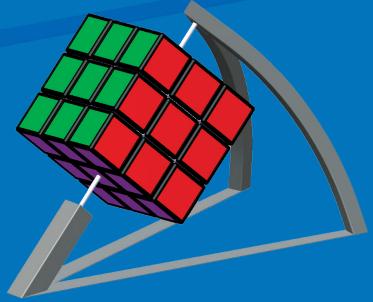
Aaron Ridley Faculty Advisor, CoE Honors Program

Presentation of Student Awards

Kon-Well Wang Chair, Mechanical Engineering

Time

11:30 am to noon


Location

2nd Floor of the GG Brown New Addition

Student Team

Kelsey Anne Hockstad Martin Turner Harris Daniel James Hiemstra Samuelina Mae Wright Ryan Douglas Kuhn Jason Samuel Hoving Douglas Riley Nordman

Student Comments and Unveiling

Table of Contents

weicome	4
MEUS Planning Committee	5
RISE	6
Schedule at a Glance	7
RISE Sessions	
1. Thermal and Fluidic Systems	8
2. Smart Materials Devices and Structures	9
3. Acoustics	10
4. Actuators and Sensors	11
5. Sensing and Controls	12
6. Device Design and Testing	13
7. Fluids and Gases	14
8. Poster Session	15
ME Reception	16
RISE Awards	18
Collaborating Programs and Student Organizations	20
ME X50 Projects	22
ME 250 Design and Manufacturing I	23
ME 350 Design and Manufacturing II	24
ME 450 Design and Manufacturing III	25
ME Project Sponsors	26
Mans	28

Welcome

On behalf of the Mechanical Engineering Department at the University of Michigan, we would like to welcome you to the Winter 2017 Mechanical Engineering Undergraduate Symposium (MEUS).

MEUS provides a venue for our exceptional undergraduate students to showcase their projects from RISE (Research, Innovation, Service and Entrepreneurship) as well as their Design and Manufacturing X50 Courses.

In RISE, our undergraduate students leverage our state-of-the-art facilities working side-by-side with internationally-renowned faculty to tackle cutting edge projects that impact our society. Projects range from transportation systems to mechanical system design, robotic systems, biological and fluidic systems, manufacturing processes and systems, and mechanical art!

Running concurrent to the MEUS poster and presentations sessions is Design Expo. Have an exciting day cheering for the ME 250 teams in their project competition, view the ME 350 four-bar linkage that automatically positions a cup to catch falling balls, and engage with our seniors as they display their ME 450 capstone design projects.

Top off the evening with our MEUS reception and poster session, celebrating a successful semester for our Mechanical Engineering Community.

The goal of MEUS is to provide an intimate forum for a vibrant exchange of ideas and results within our University of Michigan Mechanical Engineering Community. We are thrilled with the exceptional response. Our sincere appreciation goes to all the students and their RISE/X50 mentors for choosing to share their very best work at MEUS. The planning of MEUS has been a significant team effort of faculty, staff and students. Our thanks go to them for assembling such an outstanding event.

We look forward to seeing you at MEUS! May the students' work inspire you!

Kon-Well Wang, PhD

Tim Manganello/BorgWarner Department Chair and Stephen P. Timoshenko Collegiate Professor of Mechanical Engineering

MEUS Planning Committee

MEUS Technical Planning Committee

Diann Brei MEUS Co-Chair/Poster Judge/

Session Chair

Chinedum Okwudire......MEUS Co-Chair/Session Chair

David Dowling Session Chair Kenn Oldham Session Chair

Jwo PanPoster Judge
Claus Borgnakke.....Session Chair
Alan Wineman....Session Chair

Mike UmbriacME 250 Course Coordinator/ME 350

Course Coordinator

Amy Hortop......ME 450 Course Coordinator

Graduate Student Judges

Angela Wu Jintao Chen Rohith Mittapally Siddesh Shinde

T.J. Flynn Saeed Kazemiabnavi Mayur Birla Brian Worthmann

Jintao Chen Ashwin Kannan Iyengar Kai Chen Chris Pannier

Mehdi Sadeghpour Yang Liu

Ahmet Mazacioglu Mohsen Taheri Andani Deema Totah Emma Treadway Ali Attari Narayanan Kidambi

Keval Ramani Sajedeh Nasr Esfahani

Shreyas Kousik Hang Yang Deokkyun Yoon Nicholas Wurtz

MEUS/RISE Organizers

Kristel Briney Katie Morningstar Rachel Casanova Audrey Oosterwal

Grey Cichy Lisa Rogers
Michele Goci Julie Tashjian
Michael Hopko Angela Wegrecki

Tim Moore Ken Wilson

Through the RISE program, mechanical engineering undergraduate students leverage our state-of-the-art facilities working alongside internationally-renowned faculty to tackle cutting edge projects that impact our society. The Mechanical Engineering Undergraduate Symposium (MEUS) is the accumulation of the students' work.

During the day, seniors in ME 490 will present their RISE projects in 20 minute presentations. Everyone is welcome to attend these sessions and ask probing questions!

Sophomores and juniors conclude their projects with a poster session during the evening reception, where students will be available to discuss their projects in detail. The posters will also be on display during the day, if you are unable to attend the reception.

The public is invited to peruse the posters, attend presentations, and interact with the students throughout the day.

Schedule at a Glance

April 13, 2017

Session

Thermal and Fluidic Systems

Room: 2636 GGB 9:20 am-10:20 am

Session

Smart Materials Devices and Structures

Room: 2540 GGB 9:40 am-10:20 am

Session

Acoustics

Room: 2636 GGB 12:00 pm-12:40 pm

Session

Actuators and Sensors

Room: 2540 GGB 12:00 pm-12:40 pm

Session

Sensing and Controls

Room: 2540 GGB 1:20 pm-2:00 pm

Session

Device Design and Testing

Room: 2540 GGB 2:40 pm-4:00 pm

Session

Fluids and Gases

Room: 2636 GGB 2:40 pm-3:40 pm

Session

Poster Session

BorgWarner Galleria 4:30 pm-5:30 pm

ME Reception

BorgWarner Galleria

4:30 pm-5:30 pm Reception open to ME students participating in Design Expo or MEUS.

Thermal and Fluidic Systems

Session Chair: Chinedum Okwudire

2636 GGB

9:20 am **CFD Modeling of Electrohydrodynamic**

Jet Printing

Student: Maxwell Wu Instructor: Kira Barton

9:40 am Ignition Experiments on Cetane

Reference Fuels

Student: Archit Gupta

Instructor: Andre Boehman

10:00 am Analysis of Spray Geometry

Student: Evan Harris

Instructor: Andre Boehman

10:20 am Microfluidics/Nanoelectronics-Integrated

Biosensors with Mechanical Flexibility

Student: Jung Hyuk Kim Instructor: Xiaogan Liang

Smart Materials Devices and Structures

Session Chair: Kenn Oldham 2540 GGB

9:40 am 3D-Printed Self-Locking Origami

Metamaterials with Piecewise Stiffness

Student: Shihcheng Chu Instructor: Kon-Well Wang

10:00 am Piezoelectric Polymer REM Sleep Sensor

Student: Andrew Holmes Instructor: Kenn Oldham

10:20 am Variably Ventilated Veneers

Student: Brian Kalinowski

Instructors: Diann Brei, Jonathan Luntz

Acoustics

Session Chair: David Dowling 2636 GGB

12:00 pm **Detection of Transients in Noise**

Student: David Lectka Instructor: David Dowling

12:20 pm Measurement of the Theorized

Frequency-Difference Autoproduct Field

Student: Jessica Lipa Instructor: David Dowling

12:40 pm Relationship Between Tail-Pipe Bevel

Angle and Reflection Coefficient at Low

Acoustic Frequencies

Student: Stefano DeBellis Instructor: David Dowling

Actuators and Sensors

Session Chair: Kenn Oldham

2540 GGB

12:00 pm Investigation into the Energetic Effects

of Various Spinal Morphologies in

Quadrupedal Robots

Student: William Yang Instructor: C. David Remy

12:20 pm Knitting Active Materials

Student: Sumayya Atmeh

Instructors: Diann Brei, Jonathan Luntz

12:40 pm Cardiovascular Sensing-Finger Phantom

Construction

Student: George Tsirukis Instructor: Kenn Oldham

Sensing and Controls

Session Chair: Claus Borgnakke

2540 GGB

Software-Defined Control of Smart 1:20 pm

Manufacturing Systems

Student: Vincent Salpietro Instructor: Dawn Tilbury

Biometric Sensor Integration into 1:40 pm

Automotive Systems

Student: Syed Mahdi

Instructors: Diann Brei, Jonathan Luntz

2:00 pm **Development and Validation of a Toolkit**

for Time Series Data Feature Selection

Student: Anne Gu Instructor: Kira Barton

Device Design and Testing Session Chair: Diann Brei

2540 GGB

2:40 pm Stress/Strain Testing on Patient Ovarian

Cancer Cells

Student: John Bohenick

Instructor: Krishna Garikipati

3:00 pm Design, Modeling, and Experimental

Evaluation of Non-Invasive Methods for

Bio-Logging Sensors

Student: Riley Doherty Instructor: Kira Barton

3:20 pm Veinless Vents

Student: Mary McMeekin

Instructors: Diann Brei, Jonathan Luntz

3:40 pm Inflatable Attachments

Student: Jesse Velleu

Instructors: Diann Brei, Jonathan Luntz

4:00 pm Software-Defined Control of Smart

Manufacturing Systems

Student: Michael Murray Instructor: Kira Barton

Fluids and Gases

Session Chair: Alan Wineman

2636 GGB

2:40 pm Development of an Aerosol Deposition

System for Battery Prototyping

Student: Kenny Van

Instructor: Jeff Sakamoto

3:00 pm The Effects of Diffusion of Non-

Condensable Gases on Cavitation in

Soft Tissue

Student: Daniel Knister Instructor: Eric Johnsen

3:20 pm Ultraviolet Cleaning of Diesel Fuel

Student: Benjamin Golder Instructor: Andre Boehman

3:40 pm Edge Detection Method to Support

Differential Approach to CBR

Student: Xi Chen

Instructor: Bill Schultz

Poster SessionBorgWarner Galleria 4:30 pm-5:30 pm

Bulk Modulus of Compressibility of Different Fuels

Student: Jiawei Song

Instructor: Andre Boehman

Thin-film Piezoelectric Microactuators for Into-Tissue Imaging by Endoscopic Microscopy

Student: Issac Loo

Instructor: Kenn Oldham

Design of a Reconfigurable 3D Printer

Student: Justin Joseph

Instructor: Chinedum Okwudire

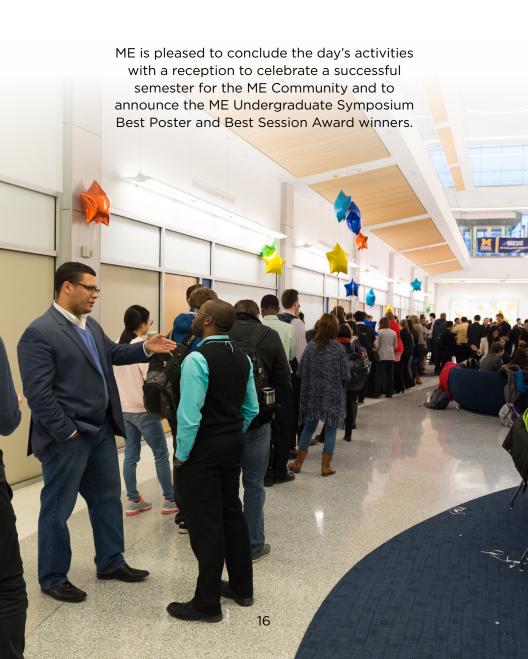
Redesign of Experimental Set-up for Dual Beam Laser Welding

Student: Quinton Ho

Instructor: Elijah Kannatey-Asibu Jr.

Modeling Bi-Directional Trust in Semi-Autonomy for Improved System Performance

Student: Beth Beindit Instructor: Dawn Tilbury


Non-Linear Control System for Lightweight and Portable Transportation Device

Student: Benjamin Eu

Instructor: Ram Vasudevan

ME ReceptionBorgWarner Galleria 4:30 pm-5:30 pm

Best Poster Award

All RISE ME 290 and ME 390 students will automatically be entered to compete for the Best Poster Award. The best poster will be judged by faculty and graduate students based upon quality of the project work, the poster, and the presentation of the work.

Winners of the award will be honored at the reception with a certificate and monetary award.

Best Session Award

All RISE ME 490 students that present at MEUS will be automatically entered to compete for the Best Session Award. Judges will attend the presentations and will select the best of each session based upon the quality of the presentation and the project work.

Winners of each award will be honored with a certificate.

Best Paper Award

The top RISE award is the Best Paper Award. The judges will review the final papers from the winners of the Best Session Award to select the best overall project based upon the quality of the project work and the presentation in both oral and written forms.

The winner of the Best Paper Award will be honored with a certificate and monetary award.

Collaborating Programs and Student Organizations

We are very grateful for the assistance of our collaborating programs and student organizations in promoting RISE and helping to plan and execute MEUS.

ASME (American Society of Mechanical Engineers)

ASME is an organization devoted to the enrichment of the UM Mechanical Engineering experience. Through seminars with professors, corporate information sessions, and visits to companies, ASME allows students to see the applications of classroom learning in the real world. Additionally, ASME works to create a community within the Mechanical Engineering Department by helping with events such as the ME Pancake Breakfast, Halloween Bash, and the ME T-shirt Contest. ASME provides an opportunity for students to meet and network through various social events, intramural sports, and community service. To learn more about our chapter, visit our website at www.umich.edu/~asme/.

PTS (Pi Tau Sigma)

Pi Tau Sigma is the international mechanical engineering honor society. Juniors and seniors are invited to join based on their academic achievements, and are initiated after showing desired involvement with the society, department, and college. You can see PTS members around campus grilling brats in the warm weather, tutoring in the FLC, hosting corporate info sessions, volunteering at department events such as the Halloween Bash and Pancake Breakfast, and on the ice for IM broomball. To learn more about our chapter, visit our website at www.umich.edu/~ptsme/.

MEGC (ME Graduate Council)

MEGC serves as a liaison to voice the opinions, problems and issues of the graduate students in the Department of Mechanical Engineering. The council engages in organizing student-led research seminars, technical workshops, professional development events, outreach, mentorship, and social activities. Additionally, MEGC aids the department in activities such as recruiting weekends, new student orientation, etc. Visit our website at me.engin.umich.edu/Gradcncl/index.html.

College of Engineering Honors Program

The College of Engineering Honors Program provides a unique opportunity for highly-motivated students to reach their full potential, both inside and outside of the classroom. Specialized academic requirements create an enriched learning environment that caters to the various disciplines of the College of Engineering. Honors students work closely with faculty and student mentors, facilitating strong intellectual bonds and personal growth, culminating in the creation of an Honors Capstone project. Students from Engineering Honors will be presenting their Honors Capstone project at the MEUS in April 2017. Visit our website at honors.engin.umich.edu/.

Multidisciplinary Design Program (MDP)

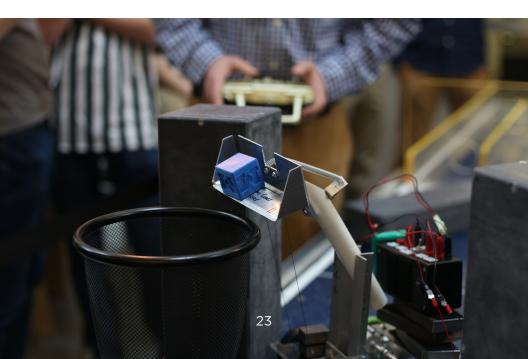
The College of Engineering MDP offers students a wide variety of long-term, team-based experiential learning opportunities. We partner with research faculty and industry leaders to bridge the gap between the classroom and professional experience. Additionally, MDP pilots new models for experiential learning and conducts educational methods research to improve the quality of the experiential learning opportunities we offer. Students participate in MDP by joining a Faculty Research or externally-sponsored project, earning academic credit through a student competition team, or attending a technical workshop. The program is focused on engineering projects but is open to students from over eleven different schools and colleges across campus. To learn more about our program and academic minor, visit our website at mdp.engin.umich.edu.

ME X50 Projects

The Michigan Engineering Design Expo is held concurrently with the Mechanical Engineering Undergraduate Symposium (MEUS).

The Design Expo showcases the achievements of our students in engineering design and prototyping, and demonstrates applications of their studies that solve real-world problems.

Students in mechanical engineering design and manufacturing courses (ME 250, 350, 450, and 455), will present their projects for the Design Expo during the ME Undergraduate Symposium.



Design and Manufacturing I

BorgWarner Galleria 1:00 pm-3:00 pm

In ME 250, the students learn engineering drawing; CAD and solid modeling; use of mechanical elements such as bearings, gears, and springs; engineering analysis; and manufacturing processes. They get hands-on experience using machine tools such as a milling machine, lathe, laser cutter, and water jet cutting machine, as well as a 3D printer.

In the course project, the students put their knowledge to use. They work in teams of four to design and build a remote-controlled machine that must compete to move objects in an arena. The students learn to choose a strategy, generate concepts for the design, perform analysis on their concept, and then design the individual components. They are given a kit of materials which they can use to manufacture the components using the student machine shop. They test and validate their designs before the competition, which is held during the MEUS.

ME 350

Design and Manufacturing II

BorgWarner Galleria 1:00 pm-3:00 pm

In ME 350, the emphasis is on the model-based design of mechanical and mechatronic systems. The students learn the design of mechanisms, the design of mechanical elements for strength, and mechatronics. Mechatronics is the synergistic integration of mechanics, electronics, control theory, and computer science within product design and manufacturing, in order to improve and/or optimize its functionality.

In the course project, students work in teams of four to design, build, and test a four-bar linkage to automatically position a cup to catch falling balls. The students use a motor and transmission to move the linkage, limit switches to calibrate the linkage position, and an encoder to keep track of the position. The students learn to program an Arduino microcontroller board (running a PID controller) to receive the signals from the sensors and make decisions based on these signals, and send the output to the motor driver to position the cup to catch the balls. The Arduino also reads a color sensor to decide where to put each ball after it is caught.

ME 450

Design and Manufacturing III Mechatronics Lab/Blue Lounge/ EECS Building 12:00 pm-4:00 pm

ME 450 is the capstone in our unique design and manufacturing sequence. Students are taught to approach open-ended design challenges through processes, to manage and work in collaborative teams, and to synthesize and apply diverse engineering knowledge to the design and manufacturing of real mechanical systems. Teams of 3–5 students work together on a semester-long design problem, typically from industry, or faculty research, and present a working prototype at Design Expo. Students are exposed to the design process from eliciting user needs and generating concepts through to prototype validation.

ME 450 projects can be viewed in the Duderstadt Building Atrium and EECS Building as part of the Design Expo from 12:00 pm-4:00 pm.

ME Project Sponsors

The Mechanical Engineering Department would like to thank our 2016–2017 ME 450/ENG 490 project sponsors and mentors!

Jolly Pumpkin/Doors & Drawers

Dr. Neil Alexander

Prof. Shorya Awtar

Prof. Mihaela Banu

Mr. Brad Bowden

Prof. Nikos Chronis

Prof. Roy Clarke

Ms. Eden Ericson

Prof. Neil Dasgupta

Prof. Brent Gillespie

Mr. Garrick Hu

Prof. Greg Hulbert

Dr. Jacob Joseph

Prof. Elijah Kannatey-Asibu

Dr. Thomas Konney

Dr. Grant Kruger

Prof. Jyoti Mazumder

Dr. Ibrahim Mohedas

Dr. Virginia Nelson

Dr. Samuel Obed

Mr. Damen Provost

Prof. Johannes Schwank

Prof. Jeffrev Stein

Prof. Joe Trumpey

Dr. Cornelius Turpin

Dr. Benjamin Viglianti

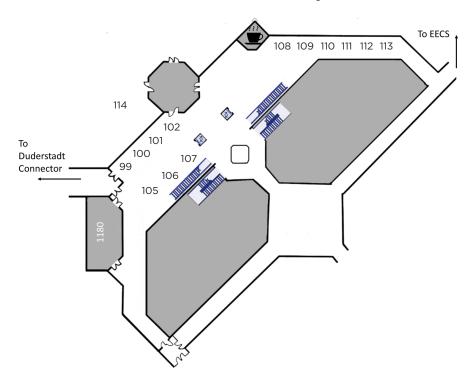
Ms. Brenda Vyletel

Ms. Maria Young

Mr. Robert Weinstein

Maps

BorgWarner Galleria

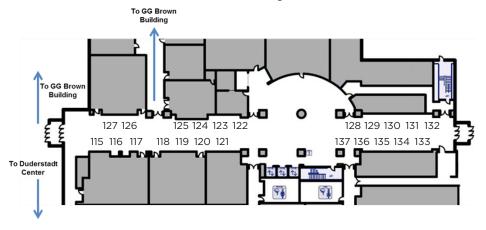


U-M North Campus

Maps

Duderstadt Building ME 450/ENG 490 Projects

EXPO # F	Proiect	Name
----------	---------	------


		,	
99		Surgical Sponge Counter	
	100	DualSense—Pressure	
	100	Monitoring Bed	
	101	Autonomous GoKart—	
	101	Electrical	
	102	Autonomous GoKart—	
	102	Mechanical	
	IP RM	Eye Disease Simulator	
	IP RM	Beer Barrel Charring	
	105	Artificial Iris Prosthesis	
	106	ADI Castings for Cost and	
	106	Weight Reduction	

EXPO # Project Name

107	Robotic Blacksmithing
108	Electronic Heat Sink
109	Astronaut Urine Repurposing Apparatus
110	MiTEE Tether and PicoSat Slow-Deployment System
111	Hardware Store Part Matcher
112	MiTEE Tether and PicoSat Fast-Deployment System
113	One-Way Lacrimal Bypass Tube
114	Lacrosse Ball Feeding Device (Ball Collection, Storage, and Systems Integration)

Maps

EECS Building ME 450 Projects

EXPO # F	Proiect	Name
----------	---------	------

	1 Toject Haine	
115	Flex-N-Gate Air Dam	
116	Automotive OEM—Tailgate Redesign	
117	VA Ann Arbor Healthcare System Mobility Assist	
118	Augment an Autonomous Baja Ground Vehicle Platform	
119	Lightweighting of Sledge Hockey Sled	
120	Electric Motorcycle Student Project Team	
121	REFRESCH Incubator for Compromised Newborns for Use in Off-Grid Maternity Clinics	
122	Pelico Design: A Positioning Sensor for a Curb Climber Attachment on Lightweight Wheelchairs	
123	An Assistive Device for Fall Prevention	
124	Wheelchair Solution	
125	REFRESCH Fruit Dryer	
126	Design and Evaluation of fMRI Compatible Sensory Stimulation Device	

EXPO # Project Name

EXI O #	i roject italiic		
127	Device to Study Non-Invasive Method for Assessing Long- Term Changes in Mechanical Tissue Properties of Skin		
128	Composite Material Using Bamboo Fibers		
129	Composite Suspension Links		
130	Jetstyx		
131	Mracing Test Bench		
132	Mechatronic Actuation of a Printer Head for a Nanoscale Additive Manufacturing System		
133	KID Watchful but Safe Eyes on Baby: A Safe Monitor		
134	Remote Controlled Automated Vehicles		
Packsize Corrugate Laser Cutting and Creasing			
136	EPA Carbon Capture Canister		
137	Nanosystems Inc. Foam Manufacturing		

