ME382 COURSE PROFILE

DEGREE PROGRAM: Mechanical Engineering

COURSE NUMBER: ME382	COURSE TITLE: Mechanical Behavior of Materials
REQUIRED COURSE OR ELECTIVE COURSE: Required	TERMS OFFERED: Fall, Winter
OPTIONAL TEXTBOOKS: Mechanical Behavior of Materials by N. Dowling. Engineering Materials vols. 1 and 2 by M. F. Ashby and D.R.H. Jones	PRE / CO-REQUISITES: MECHENG 211. I, II (4 credits)
COGNIZANT FACULTY: V. Gavini	COURSE TOPICS:
BULLETIN DESCRIPTION: Material microstructures, dislocations and defects; processing and mechanical properties of metals, polymers, and composites; heat treatment of metals; elastic, plastic, and viscoelastic behavior of materials, strain hardening; fracture, fracture mechanics, fatigue and multiaxial loading; creep and stress relaxation; materials-related design issues, materials selection, corrosion and environmental degradation of materials.	 Bonding, crystal structure, and defects Phase diagrams, and equilibrium microstructures 3-D elasticity, and introduction to orthotropy Plasticity: multi-axial yield criteria and hardening mechanisms Kinetics of phase changes Metallic alloys: heat treatment and microstructures Properties of polymers Properties of composites Fracture: linear-elastic fracture mechanics, Weibull statistics, and stress-corrosion cracking Fatigue: fatigue life and crack growth Creep: mechanisms and creep life
COURSE STRUCTURE/SCHEDULE: Lecture: 3 days per week at 1.33 hours	

COURSE OBJECTIVES: for each course objective, links to the Program Outcomes are identified in brackets.	 How atomic bonding and microstructure affect the properties of materials [1, 6] How processing and composition affect the microstructures of materials [1, 6] The mechanical properties of metals, polymers, ceramics, and composites [1] How to determine the strength of engineering components [1, 2] How to determine the life of engineering components [1, 2, 6] How to select materials and use them in the design of engineering components [1, 2]
COURSE OUTCOMES: for each course outcome, links to the Course Objectives are identified in brackets.	 Understand and explain how the properties of a material may be modified by processing and alloying [1, 2] Understand and explain how the modulus and density of a material are affected by bonding and atomic or molecular structure [1] Compare two or more competing failure mechanisms to determine which is design limiting [4, 5, 6] Interpret mechanical test data, including tensile/compression curves, fatigue-life diagrams, and creep curves [3] Interpret binary-phase diagrams to predict equilibrium microstructures [2] Understand and explain the role of kinetics in the development of non-equilibrium microstructures [2] Understand and explain the hardening mechanisms that occur in metallic alloys, and the heat treatments that allow these mechanisms to be realized [1, 2] Use von Mises and Tresca yield criteria to analyze an engineering component subjected to multi-axial loading [4] Use linear-elastic fracture mechanics to determine the <i>effect</i> that a crack will have on the structural integrity of components subjected to a static load [4, 6] Use Vneibull statistics to calculate the probability of failure of brittle materials [3, 4, 6] Use a combination of S/N curves, Basquins Law, Goodman or Gerber relationship, and Miners' Law to predict fatigue life [5, 6] Understand design and inspection procedures for components subjected to cyclic loading [6] Understand the physical origin of various models for creep of metallic components [7] Understand and explain the origin of various models for creep of metallic components [7] Understand and explain the origin of temperature and time-dependent properties of polymers [1]. Analysis of composites, and an introduction to orthotropic elastic properties [3].
ASSESSMENT TOOLS: for each assessment tool, links to the course outcomes are identified	1. Regular homework problems 2. Exams

PREPARED BY: M. Thouless, ASO Staff LAST UPDATED: 05/25/2021