ME 440 COURSE PROFILE

DEGREE PROGRAM: Mechanical Engineering

COURSE NUMBER: ME 440	COURSE TITLE: Intermediate Dynamics and Vibrations
REQUIRED COURSE OR ELECTIVE COURSE: Elective	TERMS OFFERED: Fall
TEXTBOOK / REQUIRED MATERIAL: D. J. Inman, Engineering Vibration	PRE / CO-REQUISITES: MECHENG 240. II (4 credits)
COGNIZANT FACULTY: KW. Wang	COURSE TOPICS:
BULLETIN DESCRIPTION: Newton/Euler and Lagrangian formulations for three-dimensional motion of particles and rigid bodies. Linear free and forced responses of one and two degree of freedom systems and simple continuous systems. Applications to engineering systems involving vibration isolation, rotating imbalance and vibration absorption.	 Newton/Euler equations for a system of particles Inertia properties and angular velocity of rigid bodies Newton/Euler equations of motion of rigid bodies Degrees-of-freedom and constraints Kinetic energy, potential energy and virtual work Lagranges equations for holonomic systems Single degree-of-freedom response problem Free response Response to harmonic excitation Base excitation, transmissibility, vibration isolation, rotating imbalance Response to periodic excitation Impulse response and response to arbitrary excitation The two (or n) degree-of-freedom response problem Free and forced response: The associated eigenvalue problem Second-order models: strings and rods The associated eigenvalue problem: natural frequencies and vibration modes

COURSE OBJECTIVES: for each course objective, links to the Program Outcomes are identified in brackets.	 To extend prior learning (ME240) by treating the three-dimensional motions of rigid bodies and the vibrations of two degree-of-freedom systems and simple continuous systems [1] To formulate equations of motion using either Newton-Euler equations or Lagrange's equations [1] To teach the mathematics to formulate, solve and interpret problems in dynamics/vibrations [1, 2] To demonstrate where dynamics/vibrations phenomena arise in the engineering disciplines [1, 2, 4]
COURSE OUTCOMES: for each course outcome, links to the Course Objectives are identified in brackets.	 Formulate the Newton/Euler equations of motion for systems of particles and rigid bodies in three-dimensions [1,5] identify constraints and degrees-of-freedom for dynamical systems [1,5] Formulate the Lagrange equations of motion for particles and rigid bodies [1,5] Formulate solutions for free vibration response [1,3,5] Formulate solutions for forced vibration response due to harmonic, periodic and arbitrary excitation [1,3,5] Formulate and interpret engineering problems involving vibration transmissibility, vibration isolation, and rotating imbalance [1,3,5] Analyze two degree-of-freedom systems and vibration absorbers [1,3,5] Analyze the vibration modes of strings and rods in extension and torsion [1,3,5]
ASSESSMENT TOOLS: for each assessment tool, links to the course outcomes are identified	1. Regular homework problems 2. Exam(s)

PREPARED BY: N. Perkins LAST UPDATED: 5/30/2017; reviewed - no chang