ME 461 COURSE PROFILE

DEGREE PROGRAM: Mechanical Engineering

<table>
<thead>
<tr>
<th>COURSE NUMBER: ME 461</th>
<th>COURSE TITLE: Automatic Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQUIRED COURSE OR ELECTIVE COURSE: Elective</td>
<td>TERMS OFFERED: Fall</td>
</tr>
<tr>
<td>TEXTBOOK / REQUIRED MATERIAL:</td>
<td>PRE / CO-REQUISITES: MECHENG 360. I (3 credits)</td>
</tr>
<tr>
<td>COGNIZANT FACULTY: R. Vasuvedan</td>
<td>COURSE TOPICS:</td>
</tr>
</tbody>
</table>

BULLETIN DESCRIPTION: Feedback control design and analysis for linear dynamic systems with emphasis on mechanical engineering applications; transient and frequency response; stability; system performance; control modes; state space techniques; digital control systems.

COURSE STRUCTURE/SCHEDULE: Lecture: 2 days per week at 1.5 hour
| COURSE OBJECTIVES: for each course objective, links to the Program Outcomes are identified in brackets. | 1. Model mechanical systems [1]
2. Express control specifications [1, 2]
3. Determine system performance [1, 6]
4. Design compensators to meet control specifications [1, 2]
5. Understand digital implementation of control systems [1, 2, 6]
6. Use software tools to model, analyze, and simulate control system performance [1, 2, 6] |
| --- | --- |
| COURSE OUTCOMES: for each course outcome, links to the Course Objectives are identified in brackets. | 1. Find differential equation and transfer function of single-input, single-output mechanical system [1]
2. Draw feedback system block diagram and find closed-loop transfer function [1]
3. Translate time-domain specifications into frequency-domain requirements [2]
4. Determine steady-state error to step and ramp inputs and disturbances [2, 3]
5. Given a system transfer function, find time-domain behavior (impulse, step and frequency response) [3]
6. Design PI, PD, PID, lead, and lag compensators to meet control goals [4]
7. Use software tools to design state-space controllers to meet control goals [4]
8. Use software tools to translate continuous-time controllers into digital equivalent [5]
10. Simulate system behavior using software tools [6] |
| ASSESSMENT TOOLS: for each assessment tool, links to the course outcomes are identified | 1. Regular homework problems
2. Exam(s) and/or project(s) |