ME 461 COURSE PROFILE

DEGREE PROGRAM: Mechanical Engineering

COURSE NUMBER: ME 461	COURSE TITLE: Automatic Control
REQUIRED COURSE OR ELECTIVE COURSE: Elective	TERMS OFFERED: Fall
TEXTBOOK / REQUIRED MATERIAL:	PRE / CO-REQUISITES: MECHENG 360. I (3 credits)
COGNIZANT FACULTY: R. Vasuvedan	COURSE TOPICS:
BULLETIN DESCRIPTION: Feedback control design and analysis for linear dynamic systems with emphasis on mechanical engineering applications; transient and frequency response; stability; system performance; control modes; state space techniques; digital control systems.	 System modeling, time-domain and frequency-domain techniques Control specifications (overshoot, rise time, settling time, steady-state error) Stability PID controllers Root locus method for control design Frequency response Lead and lag compensation State-space method for control design Digital control Computer methods for analysis and simulation of dynamic systems
COURSE STRUCTURE/SCHEDULE: Lecture: 2 days per week at 1.5 hour	

COURSE OBJECTIVES: for each course objective, links to the Program Outcomes are identified in brackets.	 Model mechanical systems [1] Express control specifications [1, 2] Determine system performance [1, 6] Design compensators to meet control specifications [1, 2] Understand digital implementation of control systems [1, 2, 6] Use software tools to model, analyze, and simulate control system performance [1, 2, 6]
COURSE OUTCOMES: for each course outcome, links to the Course Objectives are identified in brackets.	 Find differential equation and transfer function of single-input, single-output mechanical system [1] Draw feedback system block diagram and find closed-loop transfer function [1] Translate time-domain specifications into frequency-domain requirements [2] Determine steady-state error to step and ramp inputs and disturbances [2, 3] Given a system transfer function, find time-domain behavior (impulse, step and frequency response) [3] Design PI, PD, PID, lead, and lag compensators to meet control goals [4] Use software tools to design state-space controllers to meet control goals [4] Use software tools to translate continuous-time controllers into digital equivalent [5] Find closed-loop transfer function, system poles, frequency response using software tools [6]
ASSESSMENT TOOLS: for each assessment tool, links to the course outcomes are identified	1. Regular homework problems 2. Exam(s) and/or project(s)

PREPARED BY: D. Tilbury LAST UPDATED: 6/16/17