ME 487 COURSE PROFILE

DEGREE PROGRAM: Mechanical Engineering

<table>
<thead>
<tr>
<th>COURSE NUMBER:</th>
<th>ME 487</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQUIRED COURSE OR ELECTIVE COURSE:</td>
<td>Elective</td>
</tr>
<tr>
<td>PRE / CO-REQUISITES:</td>
<td>MECHENG 382.1 (3 credits)</td>
</tr>
<tr>
<td>COGNIZANT FACULTY:</td>
<td>E. Kannatey-Asibu, Jr.</td>
</tr>
</tbody>
</table>
| **COURSE TOPICS:** | 1. Background of Welding Processes
2. Fundamental Aspects of Fusion Welding
3. Heat Flow in Weldments
4. Fluid Flow in Weld Pool
5. Welding Metallurgy
6. Residual Stresses and Distortion in Weldments
7. Design of Weldments
8. Resistance Welding
9. Laser Welding
10. Process Monitoring and Control |
| **COURSE STRUCTURE/SCHEDULE:** | Lecture; 2 per week at 3 hours |

COURSE TITLE: Welding
TERMS OFFERED: Fall
| COURSE OBJECTIVES: for each course objective, links to the Program Outcomes are identified in brackets. | 1. To teach the process-level dependence of welding systems. [1, 2]
2. To expose the students to a variety of welding processes including their typical use and capabilities. [1]
3. To teach the important effects that welding processes may have on the material properties of the joined part with a focus on the most common welding processes such as arc, resistance, and laser welding. [1]
4. To teach the analysis and impact of heat flow in both fusion and non-fusion welding processes. [1]
5. To teach the analysis and impact of stress and strain in both fusion and non-fusion welding processes. [1]
6. To provide a technical understanding of common welding processes to aid in appropriate process selection for the material. [1, 2]
7. To provide a technical understanding of common processes to aid in appropriate joint design. [1, 2] |
| --- | --- |
| COURSE OUTCOMES: for each course outcome, links to the Course Objectives are identified in brackets. | 1. Given components to be joined, identify candidate welding processes that are capable of creating the joint to specification. [1, 2]
2. Weigh tradeoffs between similar processes based on general pros and cons in terms of heuristic guidelines. [2]
3. Compute temperatures, cooling rates, and peak temperatures of interest that are associated with different welding processes. [3, 4]
4. Compute residual stresses and strains for different welding processes. [3, 5]
5. Evaluate welding process selections for a predetermined material. [3, 4, 5]
6. Evaluate material selections for a predetermined process. [3, 4, 5] |
| ASSESSMENT TOOLS: for each assessment tool, links to the course outcomes are identified | 1. Weekly problem sets
2. One in-class midterm exam
3. One two-hour in-class final exam |